Лабораторная работа по машинному обучению
На аукционе
ECOC design for non-parametric Bayes classifier Задания 1. В предположении о независимости парзеновских ядер визуализировать восстановленные двумерные плотности распределения для каждого класса. Использовать гауссовы окна, ширину окон определить по правилу Сильвермана. 2. Для каждого из полученных в п.1 наборов базовых классификаторов рассчитать классификационные очки многоклассового классификатора, используя различные способы ECOC-декодирования: а) взвешенное; б) невзвешенное. 3. Построить графики зависимости показателей качества (accuracy, micro-averaged и macro-averaged ROC AUC и PR AUC) построенных многоклассовых классификаторов на обучающей и тестовой выборках от коэффициента пропорциональности ? (отношение ширины парзеновского окна к ширине Сильвермана). Определить для каждого классификатора ширину окна, при которой наблюдается наилучшая обобщающая способность.