Задание 1 В отделении Сбербанка микрорайона пользуются банкоматом 20% населения из близлежащих домов. Какова вероятность того, что из 500 наудачу выбранных жителей микрорайона в этом отделении Сбербанка пользуются банкоматом: а) 90 человек; б) от 80 до 130 человек; б) более 120 человек? Задание 2 Всхожесть хранящегося на складе зерна в среднем составляет 80%, а среднее квадратическое отклонение 6%. Оценить вероятность того, что в выбранной партии зерна всхожесть: а) составит не менее 85%; б) составит не более 90%; в) будет отличаться от средней не более чем на 8%; г) будет отличаться от средней не менее чем на 10%. Задание 3 Случайная величина ξ имеет нормальный закон распределения с параметрами а и . Найти параметр , если известно, что М(ξ)=5 и . Вычислить вероятность того, что значение случайной величины ξ окажется меньше 0. Построить схематично графики функции распределения и функции плотности распределения этой случайной величины. Задание 4 Из 1560 сотрудников предприятия по схеме собственно случайной бесповторной выборки отобрано 100 человек для получения статистических данных о пребывании на больничном листе в течение года. Полученные данные представлены в таблице: Количество дней пребывания на больничном листе Менее 3 3-5 5-7 7-9 9-11 более 11 итого число сотрудников 6 13 24 39 8 10 100 Найти: 1) вероятность того, что среднее число дней пребывания на больничном листе среди сотрудников предприятия отличается от их среднего числа в выборке не более, чем на одно; 2) границы, в которых с вероятностью 0,95 заключена доля всех сотрудников, пребывающих на больничном листе не более 7 дней; 3) объем бесповторной выборки, при котором те же границы для доли (см.п.б)). можно гарантировать с вероятностью 0,98. Задание 5 С целью изучения размера потребительских кредитов, выданных банком в одном из крупных магазинов электронной техники в течение последнего месяца, по схеме собственно-случайной бесповторной выборки было отобрано 180 кредитов из 2500 выданных. Величины сумм выданных кредитов (тыс. руб.) представлены в таблице: 22,9 26,6 18 25,2 28,9 30,3 21,1 13,5 15,7 22,2 18,6 28,8 11,5 26,7 31,6 14,1 26,7 22,2 19,9 23,4 16 17,9 17 20,3 10,5 26,8 13,9 18,1 19,6 12,7 20,7 17,8 19,5 24,4 21,8 23,3 18,6 24,1 19,6 20,8 15,8 14 20,5 18,2 17,8 20,7 21,9 28 17,5 11,2 12,2 24,7 14,9 19,3 23,6 22,3 20,1 19,1 21,9 25,2 22,2 18 16,3 18,3 18,6 13,5 28 15,2 22,1 24,7 20,1 14 17,3 17,6 18,9 22,4 20,9 15,1 11,9 21,8 23,4 18,2 21 22,7 23,2 19,9 26,1 21,3 21,2 16,1 27,6 17,5 18,1 13 23,9 11,2 22,5 19,5 19,2 24,2 29,7 22,7 12,7 26,4 16,8 14,7 21,3 18,5 22,3 15,3 14 23,1 25,8 27,9 17,5 24,9 25,6 32,4 17,9 19,7 11,9 17,6 15 19 22,1 14 27,5 18,6 19,5 25,5 19,5 25,3 27,9 24,9 15,5 13,8 24,2 23,8 25,8 18,9 8,3 24,6 18,7 24,2 16,3 18,9 22,4 15,6 25,6 16,6 19,6 20 20,2 9,9 22 19,2 14,5 12,6 13 20,1 22,7 20,7 20,2 12,9 21,1 19 20,2 28 20,2 21,8 14,8 17,3 17,4 14,1 13,8 19,2 17 22 17,1 17,2 Составить интервальный вариационный ряд. Записать эмпирическую функцию распределения и построить ее график. На одном чертеже изобразить гистограмму и полигон частот. По сгруппированным данным вычислить выборочные числовые характеристики: среднее арифметическое, исправленную выборочную дисперсию, среднее квадратичное отклонение, коэффициент вариации, асимметрию, эксцесс, моду и медиану. Заменив неизвестные параметры генеральной совокупности соответственно их наилучшими выборочными числовыми характеристиками и используя -критерий Пирсона, на уровне значимости α=0,05 проверить две гипотезы о том, что изучаемая случайная величина ξ – величина выданных кредитов – распределена: а) по нормальному закону распределения; б) по равномерному закону распределения. Построить чертёж, на котором изображена гистограмма эмпирического распределения, соответствующие графики равномерного и нормального распределений. Задание 6 В таблице 10 приведено распределение 120 коров по дневному надою ξ (кг) и жирности молока ƞ (%): ξ ƞ Менее 7 7-10 10-13 13-16 Более 16 Итого Менее 3,2 8 8 3,2-3,6 2 16 8 26 3,6-4,0 4 16 10 2 32 4,0-4,4 2 6 10 2 20 Более 4,4 8 6 20 34 Итого 10 16 48 36 10 120 Необходимо: 1) Вычислить групповые средние , построить эмпирические линии регрессии; 2) Предполагая, что между переменными ξ и ƞ существует линейная корреляционная зависимость: а) найти уравнения прямых регрессии, построить их графики на одном чертеже с эмпирическими линиями регрессии и дать экономическую интерпретацию полученных уравнений; б) вычислить коэффициент корреляции; на уровне значимости α=0,05 оценить его значимость и сделать вывод о тесноте и направлении связи между переменными ξ и ƞ; в) используя соответствующее уравнение регрессии, оценить средний процент жирности молока для коров, дневной удой которых составляет 15 кг.
Задание 2 5
Задание 3 7
Задание 4 10
Задание 5 14
Задание 6 28
Список использованной литературы 34
АНАЛИЗ ДАННЫХ: ЧАСТЬ 2. Учебное пособие для студентов заочной формы обучения для бакалавров направления 38.03.01 «Экономика» – М.: ФГОБУ ВО «Финансовый университет при Правительстве Российской Федерации», Департамента Анализа данных, принятия решений и финансовых технологий, 2019. - 112 с.
Работа была выполнена в 2020 году, принята преподавателем без замечаний.
Пример оформления задач для общего представления о качестве приобретаемой работы можно посмотреть в моем профиле (образцы решений).
Расчеты выполнены достаточно подробно. Все расчеты сопровождены формулами, пояснениями, выводами. Формулы и расчеты аккуратно набраны в microsoft equation.
Объем работы 34 стр. TNR 14, интервал 1,5.